

BITING DOWN ON SOFT TISSUE:

Masticatory Musculature In Two Early Eocene Faunivorous Mammals (Primates, Creodonta)

Jenny Lee

Colorado State University, Department of Anthropology & Geography

Biological Anthropology

INTRODUCTION

In this study, comparative functional anatomy is examined on the mandible, zygomatic arch, & sagittal crest of early Eocene mammalian faunivores for insights on dietary adaptations.

HYPOTHESES

The more pronounced the bone features are, the larger & more powerful are the mastication muscles. I hypothesize that whereas the nonprimate faunivore, Oxyaena, will have larger muscles for mastication suggesting a more forceful bite, the faunivorous primate, Tetonius, will have a different skeletomuscle arrangement. Such variation would be due to distinct eating behaviors. I further propose that Oxyaena will be most similar to the modern wolf (Canis lupus).

FOSSIL SPECIMENS

The following fossil specimens were analyzed from the Primate Origins Lab collection at CSU:

- *Oxyaena* (DMNH 126358)
- Tetonius (DMNH 65043)

EXTANT SPECIMENS

The following extant mammalian head specimens were examined through dissection. These specimens are housed in the Anatomy/Zoology Lab, CSU, & dissection was performed under the advisement of Dr. Jeremy Delcambre:

- Canis lupus familiaris (common dog)
- Felis catus (common house cat)
- Cavia porcellus (Guinea pig)
- Oryctolagus cuniculus (domestic rabbit)
- Equus caballus (horse)
- Bos Taurus (cow)

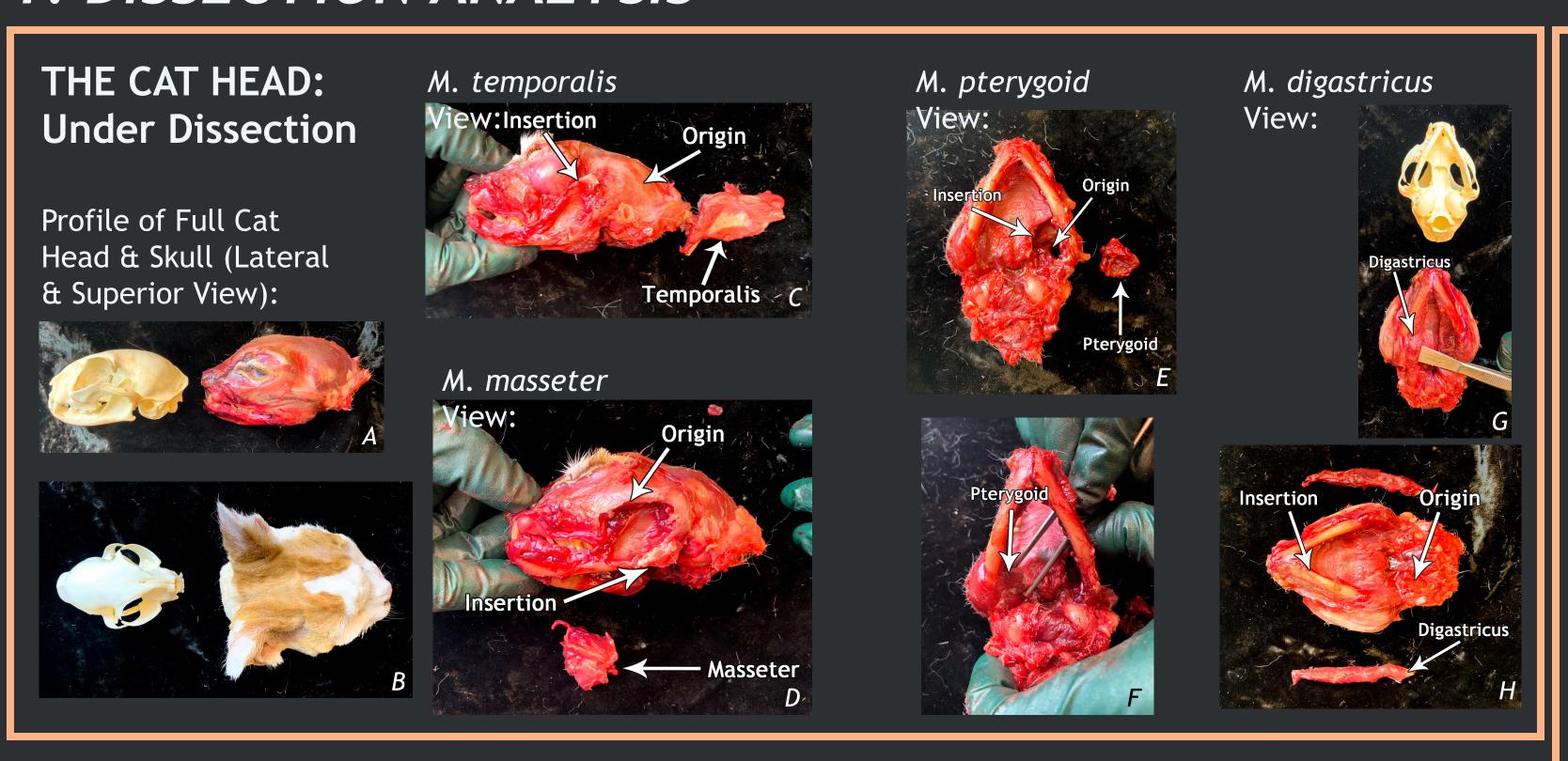
METHODS

I compared the morphology of an extinct faunivorous tarsier-like primate (Tetonius, Omomyoidea) & an extinct faunivore (Oxyaena, Creodonta). The mandible, zygomatic arch, & sagittal crest were examined to determine masticatory musculature. The fossil mandibular jaw elements were combined with published cranio-facial images from other individuals of the same taxa with the addition of my illustrations of masticatory muscles (m. temporalis, m. masseter, & m. digastricus) based on dissection research on extant mammalian masticatory anatomy.

RESULTS

The results yield insights pertinent to hypotheses regarding distinctions in primate & non-primate jaw bite force & differences in anterior food procurement adaptations.

Oxyaena skull morphology has large surface areas for the origins & insertions of both m. temporalis & m. masseter. This suggests strong jaw action for clamping with a locking jaw on its prey.

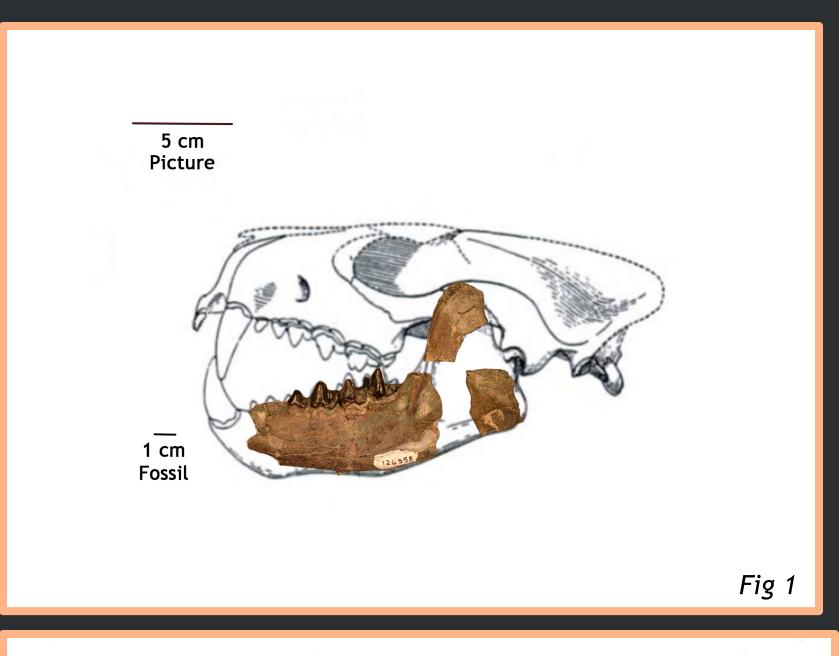

<u>Tetonius</u> (with the addition of skull morphology from its closest modern analog, Tarsius syrichta) has a less defined skull morphology for the the origins & insertions of both m. temporalis, m. masseter, & m. digastricus. The largest muscle (based on muscle surface area & thickness) is m. masseter, with m. temporalis being flat & underdeveloped. This suggests, in comparison to Oxyaena, that clamping down on prey was not necessary.

DISCUSSION

Oxyaena shows immense development in all three masticatory muscles. The thickness of *m. temporalis* is roughly 2.5 cm based on the sagittal crest where the largest part of m. temporalis is located. M. masseter has a maximum thickness twice that of m. temporalis (roughly 5 cm). The length of m. digastricus (roughly 13 cm) indicates wide depression (opening) of the mandible. The skull length of Oxyaena (about 24.5 cm), with the mastication muscles covering roughly 14 cm of the skull, indicates that the mastication muscles cover 57.14% of the skull. Note that olfactory senses are more developed in nonprimate mammals & are responsible for muzzle elongation. For comparative purposes, I analyzed the following faunivores: Crocuta crocuta (spotted hyena, observed in the Zooarchaeology Lab, CSU), Canis lupus (grey wolf), & Panthera leo (African lion, male, observed in the Zooarchaeology Lab, CSU). C. crocuta morphology allows greater mechanical advantage in m. temporalis (Buckland-Wright, 2009). Based on cranial measurements, the estimated m. temporalis thickness is about 3 cm & m. masseter is roughly 5 cm in thickness. In contrast to Oxyaena, the mastication muscles cover 63.46% of the skull. In *C. lupus* the *m. temporalis* thickness is about 1.4 cm & m. masseter thickness is roughly 5.1 cm & the mastication muscles cover 47.35% of the skull. Lastly, P. leo has m. temporalis thickness of roughly 1 cm but m. masseter is large, at roughly 8.5 cm with mastication muscles covering 44.54% of the skull.

Tetonius/Tarsius syrichta has thicknesses for m. temporalis of 0.50 cm &, doubling that, m. masseter at 1 cm. The length of m. digastricus is about 3 cm. The length of the tarsier skull is about 10.7 cm, with mastication muscles covering about 44.86% of the skull. Importantly, *m. masseter* is more developed than *m*. temporalis as suggested by the surface area it covers. This is similar to the pattern of masticatory muscle proportions in guinea pigs & rabbits. C. porcellus & O. cuniculus have large m. masseter with flat m. temporalis, which is consistent with increased chewing adaptations. This indicates that Tetonius/Tarsius syrichta was adapted for processing foods with cheek teeth, rather than anterior biting & tearing adaptations as seen in Oxyaena.

1: DISSECTION ANALYSIS


THE DISSECTIONS

In dissection I worked with Dr. Delcambre in the Zoology/Anatomy lab analyzing the muscles of mastication: m. temporalis, m. masseter, m. pterygoid, & m. digastricus. We dissected one head of each of the following: dog, cat, guinea pig, rabbit, horse, & cow. These dissections allowed an in-depth view on the different forms of each mastication muscle as well as a better understanding of the origins & insertions for each.

Starting from left, cat head dissection. Image A: lateral view of cat head (skin removed) next to cat skull; B: superior view of cat head (skin attached) next to cat skull; C: m. temporalis shown from lateral view, dissected from cat head & placed next to it; D: m. masseter shown from lateral view, dissected from cat head & placed next to it; E: m. pterygoid shown from inferior view, dissected from cat head & placed next to it; F: m. pterygoid shown from inferior view, still attached to cat head; G: m. digastricus shown from inferior view, still attached to cat head; H: m. digastricus shown from inferior view, dissected from cat head & placed next to it; I: dog skull shown in superior view; J: dog skull shown in lateral view; K: m. digastricus shown from inferior view, dissected from dog head & placed next to it; L: m pterygoid shown from lateral view, still attached to dog head; M: lateral view of dog head (skin attached); N: m. masseter shown from lateral view, dissected from dog head & placed next to it; O: m. temporalis shown from superior view, dissected from dog head & placed next to it.

2: ARTISTIC RENDITION & ANALYSES

OXYAENA

sketch from The Beginning of the Age of Mammals (Rose, 2006) with CSU Primate Origins Lab specimen (DMNH 126358) superimposed on top of it.

Fig 1: Oxyaena skull

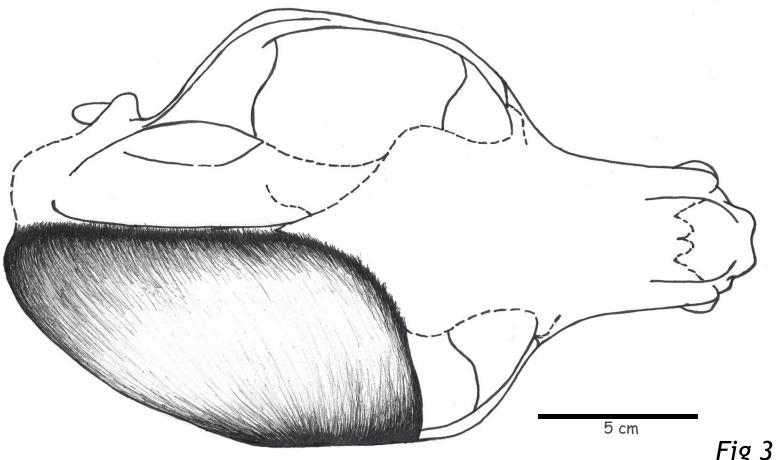


Fig 3: Superior view of Oxyaena skull copied from Rose (2006). M. temporalis is illustrated on top of the Rose (2006) skull. The origin is along the sagittal crest & the insertion is along the mandibular ramus & part of the zygomatic arch (imbedding itself within m. masseter).

Fig 5: Lateral view of Oxyaena skull copied from Rose (2006). M. temporalis, m. masseter, & m. digastricus are illustrated on top of the Rose (2006) skull. Origins & insertions of each muscle were based off of research done on wolf skulls as well as the dissection of the dog head.

CONCLUSION

Based on my comparative analysis of masticatory morphology in two Eocene mammalian faunivores, I conclude that Oxyaena shows major similarities towards that of C. crocuta, indicating a powerful bite with highly specialized dietary adaptations. I also conclude that the lack of dependence on anterior grasping/biting by the primate may be explained by manual procurement of foods with the hands rather than the face. This suggests that Tetonius was doing much more chewing, rather than tearing, of the food. An area of further research is an exploration in the similarities between *Tetonius/Tarsius* with cat morphology, due to the odd similarities in masticatory muscle adaptations.

BIBLIOGRAPHY

ndo, Hideki, et al. "MRI Examination of the Masticatory Muscles in the Gray Wolf (Canis Lupus), with Special Reference to the M. Temporalis." Journal of Veterinary Medical Science, vol. 61, no. 6, 1999, pp. 581-586., doi:10.1292/jvms.61.581.

sioso, M. A., & Carvalho, V. G. (2005). Oral anatomy of the dog and cat in veterinary dentistry practice. Veterinary Clinics of North America: Small Animal Practice, 35(4), 763-780. doi:10.1016/j.cvsm.2004.10.003 Rose, Kenneth D. (2006). The Beginning of the Age of Mammals. Baltimore, MD: Johns Hopkins University Press. Ström, D., Holm, S., Clemensson, E., Haraldson, T., & Carlsson, G. E. (1988). Gross anatomy of the craniomandibular joint and masticatory muscles of the dog. Archives of Oral Biology, 33(8), 597-604. doi:10.1016/0003-9969(88)90135-5
Tseng, Zhijie Jack, et al. "Model Sensitivity and Use of the Comparative Finite Element Method in Mammalian Jaw Mechanics: Mandible Performance in the Gray Wolf." PLoS ONE, vol. 6, no. 4, 2011, doi:10.1371/journal.pone.0019171.

TETONIUS

THE DOG HEAD:

M. digastric View:

M. pterygoid View:

Under Dissection

Profile of Dog Head

Superior) View:

(Lateral) & Skull (Lateral &

M. masseter View:

M. temporalis View:

Masseter Origin

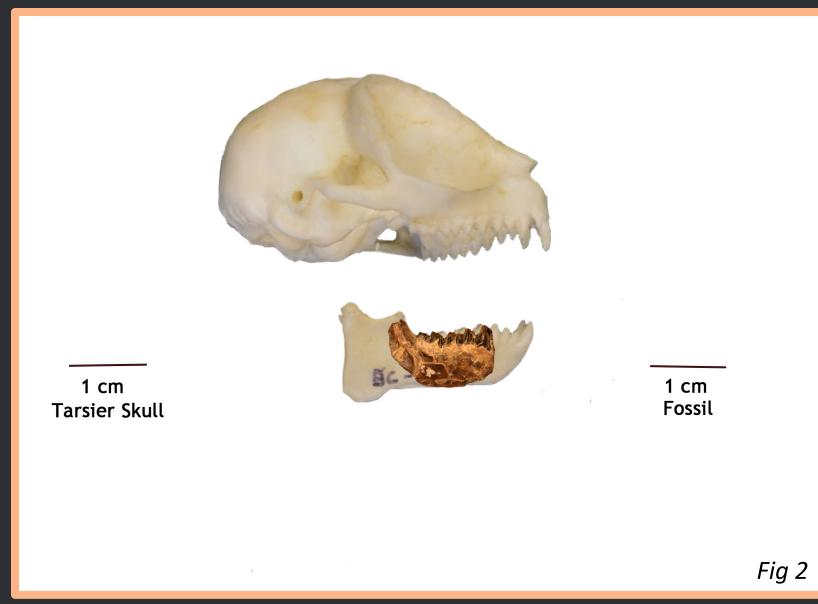


Fig 2: Tarsius syrichta skull (BC-050) photograph taken by Dr. Fellmann. The extant specimen is housed in the Bone Lab, CSU. CSU Primate Origins Lab *Tetonius* specimen (DMNH 65043) superimposed on top of it.

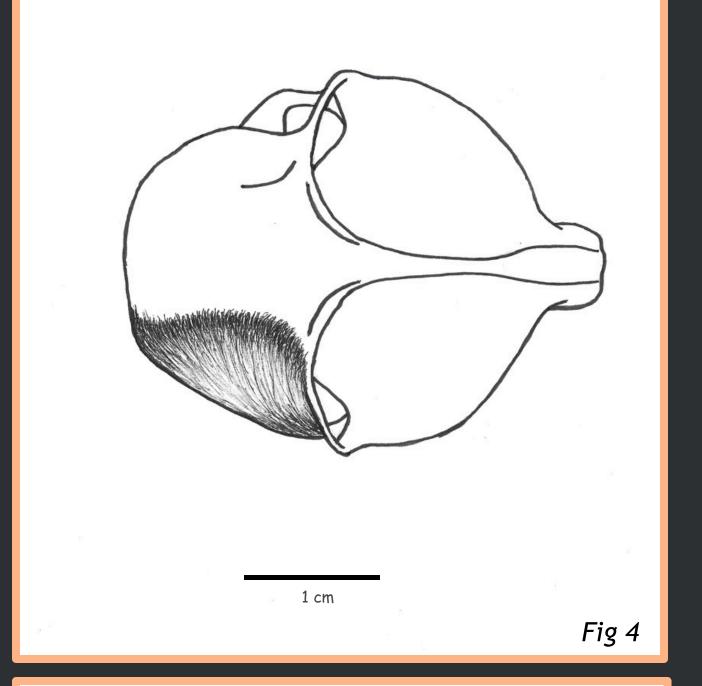


Fig 4: Superior view of Tarsius syrichta skull (BC-050) housed in the Bone Lab, CSU. M. temporalis is illustrated on top of the skull. The origin is along the sagittal crest & the insertion is along the mandibular ramus & part of the zygomatic arch (imbedding itself within m. masseter).

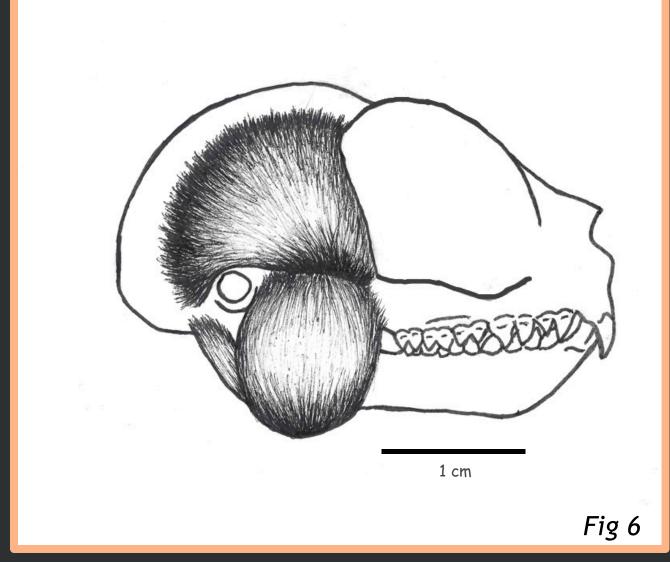


Fig 4: Lateral view of Tarsius syrichta skull (BC-050) housed in the Bone Lab, CSU. M. temporalis, m. masseter, & m. digastricus are illustrated on top of the skull. Origins & insertions of each muscle were based off of research done on wolf skulls as well as the dissection of the dog head.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Kimberly Nichols, & Dr. Thomas Bown for allowing me access to the fossil materials housed in the lab on campus. These fossil mandibles allowed me to slowly narrow my focus to two particular mammals, & to focus on one time period. Recognition also goes towards Dr. Connie Fellmann for giving me access to tarsier skulls in her bone lab on campus. Lastly, I would like to give a huge thanks to Dr. Jeremy Delcambre for performing dissections with me & not only allowing me to help with the dissections, but retrieving these specimens for me. The dissections were crucial for me, as they allowed me to visually process not only what muscles look like, but also how they attach to the bones & how they work while the animal was alive.